Create an account

Create a free IEA account to download our reports or subcribe to a paid service.

Join for freeNuclear - Fuels & Technologies - IEA2020-09-16-万宝路平台-www.yjmiaoyun.com-yjmiaoyun.com

Nuclear

Nuclear power has historically been one of the largest contributors of carbon-free electricity globally and it has significant potential to contribute to power sector decarbonisation.

Nuclear Jpg

Key findings

Global nuclear power generation was down 3.5% in the first quarter of 2020

Global nuclear power generation was down 3.5% in the first quarter of 2020 compared with the same period in 2019, pulled down by electricity demand reductions in most markets as a consequence of the Covid-19 crisis and fewer reactors in operation, with China being the exception. In IEA estimates for 2020, nuclear power declines by about 3% from 2019. A faster recovery would see higher electricity demand and some new reactors completed in 2020, leading to just a 1% decline.

A doubling in annual capacity additions is needed to be on track with the IEA's Sustainable Development Scenario

In 2019, 5.5 GW of additional nuclear capacity were connected to the grid and 9.4 GW were permanently shut down, bringing global capacity to 443 GW. New projects were launched (about 5.2 GW), and refurbishments are under way in many countries to ensure the long-term operations of the existing fleet. Nevertheless, while the existing nuclear fleet remains the world’s second most important low-carbon source of electricity, new nuclear construction is not on track with the SDS. According to current trends, nuclear capacity in 2040 will amount to 455 GW – well below the SDS level of 601 GW. Additional lifetime extensions and a doubling of the annual rate of capacity additions are therefore required.

Nuclear power can play an important role in clean energy transitions

Nuclear power has avoided about 55 Gt of CO2 emissions over the past 50 years, nearly equal to 2 years of global energy-related CO2 emissions. However, despite the contribution from nuclear and the rapid growth in renewables, energy-related CO2 emissions hit a record high in 2018 as electricity demand growth outpaced increases in low-carbon power. In the absense of further lifetime extensions and new projects could result in an additional 4 billion tonnes of CO2 emissions, underlining the importance of the nuclear fleet to low-carbon energy transitions around the globe.

Events

Latest news

Reports

Our work

The ESEFP TCP provides a platform for scientists and engineers to exchange information and further enhance the collaboration, coordinating international efforts to bridge the scientific and technical gaps between the International Thermonuclear Experimental Reactor (ITER) and DEMO (a proposed nuclear fusion power station that is intended to build upon the ITER experimental nuclear fusion reactor), and supporting governmental policies and raising awareness of fusion energy developments and potential to the general public.

The scope of the FM TCP covers materials needed to meet the requirements of structural, thermal management, fuel breeding and processing, and neutron economy of fusion systems. Relevance and application of the results of this work range from meeting the needs of existing plasma physics devices, through International Thermonuclear Experimental Reactor (ITER), and DEMO (a proposed nuclear fusion power station that is intended to build upon the ITER experimental nuclear fusion reactor) stages of fusion development, to the application of advanced materials in fully mature fusion power plants serving the base energy needs of society.

The NTFR TCP is a collaborative programme on the research and development of nuclear technology of fusion reactors, a priority area for fusion energy. The TCP focuses on technologies of components located close to the fusion plasma and subjected to high-energy neutron irradiation, in particular tritium production and processing, energy extraction, radiation shielding and components such as the first wall, blanket, shield and plasma facing components.

The PWI TCP conducts research to understand the phenomena of interaction between the plasma and the chamber walls and to develop relevant wall materials for applications in fusion power.

万宝路平台The RFP TCP aims to advance the development of fusion power through research on the Reversed Field Pinch (RFP) magnetic configuration. The three members of the RFP TCP co-ordinate RFP experiments, and can share equipment and computational tools, as well as supporting staff exchanges.

Created in 2007, the ST TCP aims to enhance the effectiveness and productivity of fusion energy science and technology by strengthening co-operation among spherical torus research programmes and facilities; contributing to and extending the scientific and technology database of toroidal confinement concepts to the spherical torus physics regime; and providing a scientific and technological basis for the successful development of fusion power using the spherical torus.

万宝路平台The strategic objective of the SH TCP is to improve the physics base of the Stellarator concept and to enhance the effectiveness and productivity of research by strengthening co-operation among member countries.

万宝路平台The CTP TCP supports the development of fusion energy by contributing to the physics basis of the International Thermonuclear Experimental Reactor (ITER), and DEMO (a proposed nuclear fusion power station that is intended to build upon the ITER experimental nuclear fusion reactor) design optimisation. The CTP TCP provides a forum for tokamak programmes of the ITER Members to co-ordinate tokamak research by carrying out scientific and technological exchanges, holding workshops and meetings for the purpose of advancing the tokamak concept in the context of fusion energy, and supporting ITER physics and technology needs.

万宝路平台 千亿体育登录 千亿体育登录 千亿体育登录 优发国际官网 优发国际官网 优发国际官网 long88|万宝路平台 long88|万宝路平台 long88|万宝路平台